Benefits of Ontologies for Collaborative Problem Solving Assessment

Jessica Andrews Todd

CRESSTCON'18

Collaborative Problem Solving (CPS)

- CPS is a skill critical for success in the $21^{\text {st }}$ century workforce
- Increased attention in the assessment community in the assessment of CPS

CPS and Assessment

- Focus for assessment:
- Conceptualizing the construct
- Designing environments that provide opportunities to display CPS skills
- Determining methods for making inferences about individuals' CPS skills
- No easy solutions given the complexity of CPS

In-Task Assessment Framework

I-TAF provides additional support for instantiating the student model, task model, and evidence model of evidence-centered design

I-TAF in ECD

How do task affordances impact measurement?

How can observables be identified in the data?

How can the construct be operationalized in terms of behavior?

I-TAF Procedures

1. Generate an Ontology
\checkmark Delineate concepts and relationships
2. Expand to a Behavioral Ontology
\checkmark Identify potential strategies
3. Expand to a Cognitively Enhanced Ontology
\checkmark Link to tactics allowed by the task
4. Extract Features
\checkmark Identify relevant sections of log data
5. Create Chains-of-Evidence
\checkmark Link features to ontological concepts

Example Application

Teaching Teamwork: Level D
Circuit 1 (User: Lion, Group: Animals)
\bigcirc Online
We got ill Vew All Circuils

Step 1: Generate an Ontology

Step 2: Expand to a Behavioral Ontology

Step 3: Expand to a Cognitively Enhanced Ontology

CPS Ontology

Uses for Ontologies

Develop Rubrics

CPS Rubric - Cognitive Dimension

Dimension	Skill	Sub-Skill 1	Sub-Skill2	Definition	Examples	Action Type
$\begin{gathered} \mathrm{C} \\ \mathrm{O} \\ \mathrm{G} \\ \mathrm{~N} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{I} \\ \mathrm{~V} \\ \mathrm{E} \end{gathered}$	Planning	Develop Strategies		Devise a plan or strategy to reach the goal state, including the steps to be undertaken	-"Using the current we find E and we can do what we did last time" -"Ok now V=I*R" -"then we can find our R values using Ohm's Law" -"ok we set our values to R and find the current" -"Let's add up our values"	chat
		Revise Strategies		Change to a different plan or strategy to solve the problem	-"Let's break the circuit instead" -"Let's try something else" -"Let's go higher"	chat
	Executing	Enact Strategies		Carry out the plan or strategy that has or has not been explicitly verbalized	- Engage in the behaviors consistent with the stated plan for the level (e.g., change resistor to the suggested resistance value; carry out suggested calculation in calculator); does not always have to occur after a stated plan (e.g., participant may carry out Ohm's Law strategy before informing teammates)	change resistor; take measurement; calculate
		Suggest/Direct Actions		Make suggestion for action for teammate to carry out	-"Don't change anything" -"Enter your E and R values Bear" -"Adjust yours to 300 ohms" -"Sleet try now" -"Wait" -"Give me a sec"	chat
		Report Actions		Communicate own actions being taken to carry out the plan	-"I set mine to 120 " -"I'm going to set mine higher" -"I used 100 ohms like you said" -"Let me go a little lower and then readjust"	chat
	Monitoring	Monitor Success		Monitor progress toward the goal, including checking intermediate and final results, detecting unexpected events, and taking remedial action when required	-State where you are or team is in relation to the goal state ("I'm good", "I got it", "We got it", "I'm too high", "I'm still a little low", "we're good?") -Click submit (submit values)	chat, click submit
		Monitor Group		Monitor whether teammates are present, following the rules of engagement, roles, completing tasks	-Prompt teammates to perform tasks ("come on Snow", "You forgot to put in the voltage", "Let's get a move on Sleet", "Now") -Calling on teammates ("Lion", "Seagull", "Jessica") -Check on the status of teammates ("Where is Rain?") -Adapt team organization/roles -"We need to figure this out"	open/close zoom; view board in zoom; chat

Step 4: Extract Features

Feature Extraction Example

Statistical and Psychometric Modeling

Modeling with I-TAF

- Use the ontology to generate a Student Model
- Compute aggregate features
- Count, mean, etc
- Use aggregate features as "observables" in the Stat Model

Bayesian Networks

Generalizability

I-TAF Generalizability

- Use the same ontology \& behavioral ontology
- Update dark gray nodes in the cognitively enhanced ontology
- To represent different affordances in new task
- Update features
- Update chains-of-evidence
- To extract the SAME observables

CPS Ontology for New Task

T-Shirt Math Task

The student council at Baruch Middle School is planning to sell school t-shirts to the students in the ath grace class. There are axcut 300 students in the 5 sth garde class bit the student council does not expect that everyone will buy a t-shirt. The student council is considering three different comparies to make the t-shirts.

1. EZ Tees charges $\$ 8$ per shirt, and thes a cre-time setup fee of $\$ 200$
2. Ferfect Printing charges $\$ 4$ per shirt, and has a one-time setup fee of $\$ 500$

3 Shirts For Less charges a flat fee of $\$ 1,500$ for up to 350 shirts.

1. Flease talk with your partner and decide which comcany you want to recommend. Wite your recommendaton and an explanation of why you chose that company below
or Shits for Less, because the school
estrmated thet not cvery stubten: woukd buy a shirt, sc we decidec to use an estimate of 100 students buying a shirt. Bccausc of this, it would be unreascrable to use Shirts for Less. I

Conclusions

- I-TAF provides a principled approach for assessment of complex constructs in digital environments
- Ontologies are the main component of I-TAF
- Help lay out the constructs we wish to measure in a principled way
- Can serve as an anchor representation for other components of assessment such as scoring rubrics, evidence identification, and task design.

Acknowledgements

This material is based upon work supported by the Institute of Education Sciences under grant R305A170432 and the National Science Foundation under Grant 1535224. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Institute of Education Sciences or National Science Foundation.

This research is based upon collaborative efforts from Educational Testing Service (ETS), The Center for Occupational Research \& Development (CORD), The Concord Consortium, the University of Colorado Boulder, and CRESST.

University of Colorado
Boulder

