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Introduction

This project estimates latent traits from students’ behavior in a serious 
game, which is a game designed for a primary purpose other than 
pure entertainment (Loh, Sheng, and Ifenthaler 2015). The game used 
in this study was designed by CRESST to assess deductive reasoning 
skills. In the two levels (referred to as Scenario 6 and Scenario 7) used 
to assess reasoning, the game asks students to navigate a UFO through 
a 2D maze in darkness with only the help of a flashlight, see Figure 1. 
Their ability to successfully navigate the maze grants insight into their 
deductive reasoning ability. The study provides a useful guideline for 
assessing player performance in real-time by introducing a procedure that 
transforms unintelligible game logs into visual representations.

Game Design

The goal of the game is to move the UFO to the target without hitting any 
obstacles: vortexes, which can be jumped over, and walls, which cannot. 
If a player runs into an obstacle, the attempt is restarted. Students are 
unable to see the walls and vortexes unless they use the flashlight to look 
ahead. They operate the UFO through a remote control with directional 
(North, East, South, and West) and action buttons (Motion, Light, and 
Jump). The game was administered to 19 12th grade students from which 
the telemetry data was collected. They also were given a five-question 
multiple choice test as an external reasoning measure to validate the data 
against. Each student was rated 0-5 based on the number of questions he 
or she answered correctly.

Categorizing Actions
Logging all player actions results in a multivariate time series of the player 
actions’ mode (Motion, Lights, Jump), direction (North, East, South, West), 
and the initial and final position of the UFO (x and y coordinates). This 
automatically collected information is human-readable, but high-level 
strategies cannot be identified from the raw data.

In a first step, all actions are categorized into one of nine comprehensive 
and disjunctive action categories by walking through the binary decision 
tree depicted in Figure 3. This tree outlines a function for automatically 
labeling every player action. A lights action can be “informative use” or 
“redundant” depending on whether or not new information was gained. 
A motion action can be “lucky,” “unlucky,” “informed,” “illogical,” “repeat 
mistake,” “turn around,” or “retrace.” The distinctions within motion actions 
are based on whether the outcome of the move is known to the player, 
it has been previously done or seen with the light, it has been done in 
this attempt or a previous attempt, or it led to a crash. These criteria 
are automatically computed from the log by creating a model for every 
player’s knowledge and previous moves that is updated after every move, 
seen in Figure 4. 

Loh, C. S., Sheng, Y., & Ifenthaler, D. (2015). Serious Games Analytics. Edited by Christian Sebastian Loh, Yanyan Sheng, and Dirk Ifenthaler. Cham: Springer International Publishing. doi, 10: 978-3.

Shute, Valerie J, Matthew Ventura, Malcolm Bauer, and Diego Zapata-Rivera. 2009. “Melding the Power of Serious Games and Embedded Assessment to Monitor and Foster Learning.” Serious Games: 
Mechanisms and Effects, 2: 295–321.

ReferencesContact alee14@ucla.edu

maierhofer@cresst.org

Anna Lee

Thomas Maierhofer

Mapping Actions

Each player’s actions in their attempts are plotted on the game grid 
and color-coded according to the action category. These maps visually 
demonstrate various player strategies based on action types utilized 
during the game, as well as how they learned over time, see Figure 2. 
For instance, a player might initially try a trial-and-error method to move 
through the maze, then learn to use the light and make informed moves. 
The maps provide insight into the player’s thought processes.

Figure 2. Each row is a new player and each column is a different attempt. The target is represented by a circle 
colored green for success on the attempt, red for failure. The black lines represent wall obstacles. In the empty 
map, the player hit the reset button immediately upon starting the attempt, resulting in a new attempt.

Figure 1. Scenario 7 as the player sees it (left) and with lights on (right). A version of this game with other 
scenarios is available for testing at ufo.cresst.net.

Figure 3 (right). Binary decision 
tree which summarizes the action 
categories. Every action is categorized 
by walking through the binary 
decision tree from the top down 
until a leaf node is reached. This 
tree is a visualization of the function 
that automatically labels each move 
players made in-game.

Bayesian Network
The nine action categories are scored on a scale for reasoning ability 
and risk affinity by two expert raters following Shute, Ventura, Bauer & 
Zapata-Rivera (2009). High agreement (Cronbach’s alpha > 0.95 for both 
deductive reasoning ability and risk affinity) allows for averaging their 
scores. These scores are used to train a Bayesian network predicting action 
category based on latent reasoning ability and risk affinity. This network 
allows the probability of the actions given a combination of latent traits 
(Figure 5) and the estimation of the latent traits given an action (Figure 6).

Estimation of Latent Traits

Applying this Bayesian network onto every student’s sequence of actions 
results in a player profile of estimated risk affinity and reasoning ability 
over time (Figure 7). It is not a dynamic Bayesian network, so it explicitly 
neglects the temporal order of the observations. The non-dynamic 
Bayesian network’s theoretical independence assumption of latent traits 
at action t and action t+1 is obviously violated. A credible estimation of 
the latent traits at the time of action t is achieved by non-linear smoothing 
where a loess estimator is used to produce a smooth estimate (Figure 7). 
Neglecting the temporal order in the Bayesian network enables a more 
flexible estimation of the temporal development of latent traits.

Figure 7. Estimated risk affinity (red) and reasoning ability (blue) for every action performed to complete one 
scenario and smooth line with 95% confidence interval. The action category “retrace” (repeating a move after 
a crash to get back) was omitted due to its high occurrence and low informativeness. The left figure shows 
the profile of a player who is quickly adapting a successful strategy (initial high risk affinity and low reasoning 
invert after a while), while the right figure shows a player who is mostly guessing (way more actions overall, 
high risk affinity and low reasoning ability throughout).

Linear Regression
As an external validation of the estimated latent traits, the average 
estimated latent reasoning ability was compared to students’ performance 
on a paper-based reasoning test taken before playing the game. In both 
scenarios, the correlation coefficients suggest substantial agreement of 
the reasoning ability estimated in-game and on paper. As expected from 
the Bayesian network results, risk affinity had an inverse correlation with 
reasoning ability. It was not assessed externally as a separate measure.

Conclusion
The estimated reasoning ability shows substantial agreement with a paper-
based reasoning test, supporting the validity of the proposed assessment. 
The project provides a guideline for visualizing player performance in 
real-time, with potential applications in player assessment and providing 
adaptive in-game feedback. Further validation of this work is in progress.

Figure 5. Bayesian network predicting action category. Students with low risk affinity and high reasoning 
ability are expected to have more informative light use and take more informed moves (left). Students with 
high risk affinity and low reasoning ability are expected to crash and make uninformed moves more (right).

Figure 6. Bayesian network predicting latent traits. An illogical move (crashing even though the player should 
know it would happen) indicates a high risk affinity and low reasoning ability (left). An informed move (moving 
into a space that is known to be safe) indicates a low risk affinity and high reasoning ability (right).

Figure 4 (bottom). Snapshot of the 
data log used to generate a model for 
every player’s knowledge and moves. 
By evaluating an action against the 
knowledge a player already has, latent 
cognitive abilities can be inferred.

Figure 8. The average reasoning ability and risk affinity scores from the Bayesian network were compared 
against the external reasoning measure. 
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