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Figure 8. The average reasoning ability and risk affinity scores from the Bayesian network were compared
against the external reasoning measure.

] Applying this Bayesian network onto every student’s sequence of actions
results in a player profile of estimated risk affinity and reasoning ability
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| | | | By evaluating an action against the % ; @ over time (Figure 7). It i1s not a dynamic Bayesian network, so it explicitly .
Each player’s actions in their attempts are plotted on the game grid knowledge a player already has, latent f | ‘” neglects the temporal order of the observations. The non-dynamic Conclusion
and color-coded according to the action category. These maps visually cognitive abilities can be inferred. e 0 S ter o St Bayesian network’s theoretical independence assumption of latent traits
demonstrate various player strategies based on action types utilized attempt Success action - direction start.xloc start.yloc end.xloc end.yloc type at action t and action t+1 is obviously violated. A credible estimation of The estimated reasoning ability shows substantial agreement with a paper-
during the game, as well as how they learned over time, see Figure 2. 8 TRUE  MOTION | SOUTH 0 ;r 0 2 retrace the latent traits at the time of action t is achieved by non-linear smoothing based reasoning test, supporting the validity of the proposed assessment.
For instance, a player might initially try a trial-and-error method to move 8 TRUE  MOTION  EAST o 2 ; 2 retrace where a loess estimator is used to produce a smooth estimate (Figure 7). The project provides a guideline for visualizing player performance in
through the maze, then learn to use the light and make informed moves. 2| e | MOTION | EAST ; . , 2 | retrace Neglecting the temporal order in the Bayesian network enables a more real-time, with potential applications in player assessment and providing
The maps provide insight into the player's thought processes. ) S I —— . . . 2 | informative use flexible estimation of the temporal development of latent traits. adaptive in-game feedback. Further validation of this work is in progress.




